Smart Workflow Scheduling using the Hybridization of Random Weight Model with Ant Colony Optimization (RWM-ACO)
نویسندگان
چکیده
منابع مشابه
Smart Workflow Scheduling using the Hybridization of Random Weight Model with Ant Colony Optimization (RWM-ACO)
The cloud based platforms are designed specifically for the provision of the high performance clusters (HPC), which is realized by using the multiple techniques all together for the realization of the distributed computing environment. The cloud platforms are designed to handle the independent queries either in the groups or individually for the minimization or optimization of the response time...
متن کاملProcess Scheduling Using Ant Colony Optimization Techniques
The growing availability of low cost microprocessors and the evolution of computing networks have enabled the construction of sophisticated distributed systems. The computing capacity of these systems motivated the adoption of clusters to build high performance solutions. The improvement of the process scheduling over clusters originated several proposals of scheduling and load balancing algori...
متن کاملTasks Scheduling using Ant Colony Optimization
Problem statement: Efficient scheduling of the tasks to heterogeneous processors for any application is critical in order to achieve high performance. Finding a feasible schedule for a given task set to a set of heterogeneous processors without exceeding the capacity of the processors, in general, is NP-Hard. Even if there are many conventional approaches available, people have been looking at ...
متن کاملOptimal Distributed Generation (DG) Allocation in Distribution Networks using an Improved Ant Colony Optimization (ACO) Algorithm
Abstract: The development of distributed generation (DGs) units in recent years have created challenges in the operation of power grids, especially distribution networks. One of these issues is the optimal allocation (location and capacity) of these units in distribution networks. In this thesis, a method based on the improved ant colony optimization algorithm is presented to solve the problem ...
متن کاملBeam-ACO - hybridizing ant colony optimization with beam search: an application to open shop scheduling
Ant colony optimization (ACO) is a metaheuristic approach to tackle hard combinatorial optimization problems. The basic component of ACO is a probabilistic solution construction mechanism. Due to its constructive nature, ACO can be regarded as a tree search method. Based on this observation, we hybridize the solution construction mechanism of ACO with beam search, which is a well-known tree sea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2017
ISSN: 0975-8887
DOI: 10.5120/ijca2017913618